Deriving High Quality Genome Sequences

Background

 Genome data containing a large number of contigs reduces its usefulness and can prevent publication of the information. Can combined sequencing from different technology platforms improve assembly and quality?

Approach

- Illumina, 454 and PacBio sequencing technologies were used to generate up to 11 different *de novo* and hybrid genome assemblies for four different bacteria, which were assessed for quality using summary statistics (e.g. number of contigs, N50) and using *in silico* evaluation tools.
- Differences in predictions of multiple copies of rRNA operons were evaluated by PCR/Sanger sequencing and then the validated results were applied as an additional criterion to rank the assemblies.

Outcomes

- Assemblies employing longer PacBio reads were better able to resolve repetitive regions.
- In this study, the combination of Illumina and PacBio sequence data assembled through the ALLPATHS-LG algorithm gave the best summary statistics and most accurate rRNA operon number predictions.

Significance

 This comprehensive comparison of different technologies, library types and assembly algorithms will aid others looking to improve existing genome assemblies.

Utturkar S.M., *et al.* 2014. Evaluation and validation of *de novo* and hybrid assembly techniques to derive high quality genome sequences. Bioinformatics. In press. <u>http://pmi.ornl.gov/</u>

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

OAK RIDGE NATIONAL LABORATORY