Plant-Microbe Interfaces: AI-GWAPA, explainable-AI-based approaches to genome wide phytobiome association

Piet Jones ${ }^{1,2 *}$ (jonespc@ornl.gov), Benjamin Garcia ${ }^{1}$, Manesh Shah ${ }^{1}$, Wellington Muchero ${ }^{1}$, Jay Chen ${ }^{1}$, Gerald Tuskan¹,

 Daniel Jacobson ${ }^{1,2}$, and Mitchel Doktycz ${ }^{1}$${ }^{1}$ Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN; ${ }^{2}$ The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN

Introduction

The phytobiome consists of the plant, organismal communities and their environment. The interactions between these have significant effects on observable measurable traits that have potential economic and sustainability implications. A better systems-level understanding of the beneficial and antagonistic relationships between these components will enhance our capacity to influence these systems to produce desirable and impactful traits.

In the framework presented here: Artificial
Intelligence - Genome Wide Association Phytobiome Analysis (AI-GWAPA), we utilize machine learning, deep learning and general artificial intelligence (AI) techniques), to elucidate the interactions between microbial and viral constituents of the 1000 member Populus trichocarpa population arrayed in common gardens in the Pacific Northwest. Metatranscriptome samples from leaf, xylem and root along with approximately 10 million SNPs called across the population allow us to associate host genetic variants to microbial/viral constituents. Using samplespecific networks, a machine learning approach, we model the contributions that a genotype has to the putative pathogenic-mutualistic relationships between taxa. Furthermore, we utilize an AI approach by training a deep learning neural network to estimate putative phytobiome-derived protein interactions among the host proteome. Together these approaches allow us to improve our fundamental understanding of the relationships between the plant and its phytobiome. (http://pmi.ornl.gov)

Factorization Machines

Taxa were identified from
the leaf and xylem
transcriptome, using
ParaKraken, a parallel
version of Kraken
developed in our lab. This resulted in a phytobiome genera level classification for viruses, bacteria and aphids in a taxasample matrix. To improve our confidence in taxonomic assignment we for putative outlier taxa. Factorization machines (FM) are an approach to approximate high order interactions in linear compute time, they are particula sparse data [1]. Here we implemented the deep learning FMoutlier approach in Pytorch [2],
using a k-fold cross validation using a k-fold cross validatio engineering. Training was performed on $\mathrm{k}-1$ set of taxa, with a response vector of 0 , followed by prediction on the kth set of \mathbf{t} Repeating this for multiple score. A score cutoff based on the median absolute deviation from the median (MAD) was applied.

Genome Wide Association Analysis

The phytobiome taxa that remained after the FMoutiier analysis were treated as phenotypes in a 10 million single-nucleotide polymorphisms (SNPs), were then filtered and used as the genotype information. Only SNPs with a minor allele frequenc greater than 0.01 were analyzed using EMMAX [3]. SNPs, after removing those SNPs with an Idscore > 0.5. Phenotype measurements were further masked if their MAD score > 5, and only phenotypes with non-masked observations in more than 5% of the population were analyzed. An FDR value of $\mathbf{0 . 0 1}$ Only SNPs that fall within a gene boundary are reported, resulting in a taxa to gene association Results are visalizea in a a vive potit i figure 2 Mutualism/antagonism DUO was used to compare taxa abundance a
the population. Taxa abundance vectors are the population. Taxa abundance vectors are measurements into High, Medium or Low, based on the quantiles of the entire dataset. The metric then evaluates how correlated the high (up) /low (down) correlation values: UU, UD, DU and DD ($\mathrm{U}=$ up, $\mathrm{D}=$ down). The correlation is therefore directed, and has a source and sink, respectively. Mutualism is suggested by a UU or DD correlation, while antagonism is sugge
\qquad

Figure 1: (A) Diagram of the FM-outier neural network.
The input matrix has taxa as rows and samples as
The input matrix has taxa as rows and samples as
columns. Taxa are grouped into training and test sets, columns. Taxa are grouped into training gand test sets,
respentively. After a linear alaer, comboined layer of up to
3rd order interactions are estimated the restitn 3rd order interactions are estimated, the e esultant mean
suared error is back propagated to learn the model
parameters squared error is back propagated to learn the model
parameters. (B) Median absolute deviation (MAD) from the
median values for the FM-outiter scorese these median values for the F FM-outier scores, these indicate a
clear cutof of 1 . Taxa w with a MAD value for their score >1 clear cutoff of 1 . Taxa with a MAD value for
are deemed to be outiers and discarded.
$1^{\text {st }}, 2$ nd, $3^{\text {rd }}$

Figure 3: Hive plots of the top 100 DUO metric results of taxa in leaf
and xylem samples, respectively. Nodes on the respective aees are
 thus an edge between प and D represents a putative antitagoonisicic
reltaioshio, as the first taxa has a higher abundance (UP) while the
 on the metric representing the sink nodes results thigher values are
theefofer further out from the center of the plot). The order of the bla
nodes carry no meaning and merely represent the source node.

Viral
Figure 2: Hive plots of the GWAS results. A hive plot
consists of a set of axis that represent categories, on these axis nodes or objectst are arrangeed dabered on
some measurement, for example connectivity. An arch
 taxa nodes, from the respective leaflxylem GWAS
analysis. Nodes on a gene axis are aranged based on
the number of taxa associations the number of taxa associaitions (the outer nodes
therefore have higher connectivity), similry taxa nodes
are arranged based on the number of GWWS results.
 Arcs between taxa and gene nodes indicate a
significant GWAS result Trax that are both in leaf and
xylem are connected, similiarly genes both in leat and xylem are connected, similarly genes both in leaf and
xylem are connetcod (B) Hive plot of the eneigborbood
of the of the gene that is associated to a particularar taxa from
the eeaf. Nodes are arranged in a random order
consistent across axes. Arcc peetween taxa indicate that consistent across axes. Arcs between taxa idndicate that
they share a gene, based on the significant $\begin{aligned} & \text { WNAS } \\ & \text { results. We see that there is one virus that is associated }\end{aligned}$ Westis. We see that here is one virus that is associate
with a gen which in turn associase with b bacteria.
Similarly there are large fungal to fungal, bacterial to simiariy there are large fungal to fungal, bacterial to
bacteria and bacterial to tungal neighborooods. (C)
Simiar to B, but tor the yylem GWAS instead. .ere we see a viral Io virar neightorhood that is absend trom the see a viral to viral neighborhood that is absent from
leaf, a few more viral to bacterial neighborhoods.

Sample Specific Networks (SSN)
SSN values are generated by removing a genotype and recalculating the DUO metric. By doing this for all genotypes and then observing the resultant change from the original metric, we can estimate the genotype's contribution
to the DUO correlations. See Figure 4. ns. See Figure 4

Figure 4 : In the figure red indicates that the genotype has a negative effect on the metric (mutualism in this case),
while blue indicates the genotype has a positive effect. (A) Surface plot of the genotype effect in leaf s amp lis whe DUO UU value, the effect on putative mutualism. (B) Surface plot of genotype effect in xylem samples on the DOO UU value
DUO UU values.

In progress

We are currently developing a capsule network-based deep learning model that is capable of predicting protein-protein interactions from sequence data. We train the network on kmers of proteins that interact, and take into account
approximately 200 quantum chemical properties of the respective amino acid approximately 200 quantum chemical properties of the respective amino Capsule networks are capable of taking into account the localization of
features. The network will therefore, through feature engineering, provid information on chemical properties and protein segments that explain the observed interaction. Training is currently underway using data from Arabidopsis thaliana. Transfer learning will be used to adapt the model to Arabidopsis thairana. Transfer iearning will be used to adapt the model to
Popul/s trichocarpa. Protein interactions will then be predicted based on genes
associated to taxa in the phytobiome.

Conclusion

Here we provide a comprehensive framework that allows for a systems biology approach in the analysis and interpretation of the complex interactions between snapshot if the phytobiome. From the metatranscriptome samples, we obtain machine learning approach allows us to model up to 3 rd order interactions between the respective taxa, thereby retaining signal that would otherwise be missed using standard metric-based analysis. GWAS analysis helps to uncove the nature of this complex interaction. We find a few highly connected genes nvolved in functions such as phospholipid transportation, protein degradation, ranscriptional regulation, etc. The differences in the nature of the association With more advanced metrics, such as DUO, we see differences in the types mutualistic/antagonistic relationships when comparing leaf and xylem. With sample specific networks we can start to understand the genotypic effect on these relationships. By further using a deep learning-based protein interactio system.

