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The phytobiome consists of the plant, organismal 
communities and their environment. The interactions 
between these have significant effects on observable 
measurable traits that have potential economic and 
sustainability implications. A better systems-level 
understanding of the beneficial and antagonistic 
relationships between these components will enhance 
our capacity to influence these systems to produce 
desirable and impactful traits.

In the framework presented here: Artificial 
Intelligence – Genome Wide Association Phytobiome
Analysis (AI-GWAPA), we utilize machine learning, deep 
learning and general artificial intelligence (AI) 
techniques), to elucidate the interactions between 
microbial and viral constituents of the 1000 
member Populus trichocarpa population arrayed in 
common gardens in the Pacific Northwest. 
Metatranscriptome samples from leaf, xylem and root 
along with approximately 10 million SNPs called across 
the population allow us to associate host genetic 
variants to microbial/viral constituents. Using sample-
specific networks, a machine learning approach, we 
model the contributions that a genotype has to the 
putative pathogenic-mutualistic relationships between 
taxa.  Furthermore, we utilize an AI approach by training 
a deep learning neural network to estimate putative 
phytobiome-derived protein interactions among the host 
proteome. Together these approaches allow us to 
improve our fundamental understanding of the 
relationships between the plant and its phytobiome.
(http://pmi.ornl.gov)

The phytobiome taxa that remained after the FM-
outiier analysis were treated as phenotypes in a 
genome wide association analysis. Approximately 
10 million single-nucleotide polymorphisms (SNPs), 
were then filtered and used as the genotype 
information. Only SNPs with a minor allele frequency 
greater than 0.01 were analyzed using EMMAX [3]. 
Heritability was estimated from the same set of 
SNPs, after removing those SNPs with an ldscore > 
0.5. Phenotype measurements were further masked 
if their MAD score > 5, and only phenotypes with 
non-masked observations in more than 5% of the 
population were analyzed.  An FDR value of 0.01 
was applied to correct for multiple hypotheses bias. 
Only SNPs that fall within a gene boundary are 
reported, resulting in a taxa to gene association. 
Results are visualized in a hive plot in Figure 2

Taxa were identified from 
the leaf and xylem 
transcriptome, using 
ParaKraken, a parallel 
version of Kraken 
developed in our lab.  This 
resulted in a phytobiome
genera level classification 
for viruses, bacteria, 
archaea, fungi, nematode 
and aphids in a taxa-
sample matrix. To improve 
our confidence in 
taxonomic assignment we 
processed the sparse data
for putative outlier taxa. 
Factorization machines (FM) are an 
approach to approximate higher-
order interactions in linear 
compute time, they are particularly 
useful for outlier detection in 
sparse data [1]. Here we 
implemented the deep learning FM-
outlier approach in Pytorch [2], 
using a k-fold cross validation 
approach after initial feature 
engineering. Training was 
performed on k-1 set of taxa, with 
a response vector of 0, followed by 
prediction on the kth set of taxa. 
Repeating this for multiple 
iterations, we obtained an outlier 
score. A score cutoff based on the 
median absolute deviation from the 
median (MAD) was applied. 

Figure 1: (A) Diagram of the FM-outlier neural network. 
The input matrix has taxa as rows and samples as 
columns. Taxa are grouped into training and test sets, 
respectively. After a linear layer, a combined layer of up to 
3rd order interactions are estimated, the resultant mean 
squared error is back propagated to learn the model 
parameters. (B) Median absolute deviation (MAD) from the 
median values for the FM-outlier scores, these indicate a 
clear cutoff of 1. Taxa with a MAD value for their score > 1 
are deemed to be outliers and discarded.
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Figure 2: Hive plots of the GWAS results. A hive plot 
consists of a set of axis that represent categories, on 
these axis nodes or objects are arranged based on 
some measurement, for example connectivity. An arch 
is drawn between nodes on each axis to indicate a 
relationship. (A) The four axes represent either genes or 
taxa nodes, from the respective leaf/xylem GWAS 
analysis. Nodes on a gene axis are arranged based on 
the number of taxa associations (the outer nodes 
therefore have higher connectivity), similarly taxa nodes 
are arranged based on the number of GWAS results. 
Arcs between taxa and gene nodes indicate a 
significant GWAS result. Taxa that are both in leaf and 
xylem are connected, similarly genes both in leaf and 
xylem are connected. (B) Hive plot of the neighborhood 
of the gene that is associated to a particular taxa from 
the leaf. Nodes are arranged in a random order, 
consistent across axes. Arcs between taxa indicate that 
they share a gene, based on the significant GWAS 
results. We see that there is one virus that is associated 
with a gene which in turn associates with a bacteria. 
Similarly there are large fungal to fungal, bacterial to 
bacterial and bacterial to fungal neighborhoods. (C) 
Similar to B, but for the xylem GWAS instead. Here we 
see a viral to viral neighborhood that is absent from the 
leaf, a few more viral to bacterial neighborhoods.
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Figure 3: Hive plots of the top 100  DUO metric results of taxa in leaf 
and xylem samples, respectively. Nodes on the respective axes are 
taxa. The axes are U=Up, D= Down. The plot is read anti-clockwise, 
thus an edge between U and D represents a putative antagonistic 
relationship, as the first taxa has a higher abundance (Up) while the 
second has a lower abundance (Down). Red nodes are sorted based 
on the metric representing the sink nodes results (higher values are 
therefore further out from the center of the plot) . The order of the black 
nodes carry no meaning and merely represent the source node.   

Sample Specific Networks (SSN)

We are currently developing a capsule network-based deep learning model that 
is capable of predicting protein-protein interactions from sequence data. We 
train the network on kmers of proteins that interact, and take into account 
approximately 200 quantum chemical properties of the respective amino acids. 
Capsule networks are capable of taking into account the localization of 
features. The network will therefore, through feature engineering, provide 
information on chemical properties and protein segments that explain the 
observed interaction. Training is currently underway using data from 
Arabidopsis thaliana. Transfer learning will be used to adapt the model to 
Populus trichocarpa. Protein interactions will then be predicted based on genes 
associated to taxa in the phytobiome.

Here we provide a comprehensive framework that allows for a systems biology 
approach in the analysis and interpretation of the complex interactions between 
a host and its phytobiome. From the metatranscriptome samples, we obtain a 
snapshot of the putative constituents of this phytobiome. The factorization 
machine learning approach allows us to model up to 3rd order interactions 
between the respective taxa, thereby retaining signal that would otherwise be 
missed using standard metric-based analysis. GWAS analysis helps to uncover 
the nature of this complex interaction. We find a few highly connected genes 
involved in functions such as phospholipid transportation, protein degradation, 
transcriptional regulation,  etc. The differences in the nature of the associations 
when comparing leaf to xylem samples is also apparent from the above figures. 
With more advanced metrics, such as DUO, we see differences in the types 
mutualistic/antagonistic relationships when comparing leaf and xylem. With 
sample specific networks we can start to understand the genotypic effect on 
these relationships. By further using a deep learning-based protein interaction 
model we can work towards a protein level understanding of this dynamical 
system.

●

●
●
●
●●
●

●

●

●
●
●●
●

●

●

●●●

●●

●

●

●

●●

●
●

●●
●●●●

●

●
●●

●

●
●
●

●

●
●●●

●

●
●●●

●

●
●

●

●

●
●●

●

●
●

●

●●●
●

●

●
●●

●●●

●

●

●
●

●

●●●
●●●●●●
●

●
●●●●●●
●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●●●

●

●
●

●
●
●●
●
●

●

●●
●●●●

●●

●
●●
●

●
●●
●

●

●

●

●●
●●

●

●
●

●

●●●

●●
●

●

●

●

●●●

●●
●
●
●
●
●

●

●

●●

●●

●●

●

●
●
●●
●

●
●●
●●
●●●●●

●●

●●

●●●
●

●●

●

●

●

●
●

●

●
●
●●●●●

●

●●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●
●●●●

●
●
●

●
●

●
●

●

●

●
●●
●●
●●●●

●

●●●
●●
●●
●

●

●●●
●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●
●●

●

●

●
●

●

●

●
●●●
●●

●

●

●●●●
●

●
●
●
●●
●

●
●
●
●●

●

●
●
●

●●●
●

●

●●
●●●
●

●

●
●
●

●

●

●

●

●●
●
●
●

●

●

●
●●

●

●
●

●

●●●

●

●

●●●●
●

●●
●
●

●

●

●●
●

●

●
●●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●
●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●

●
●●
●●●●●

●

●●

●●●●●●●
●●●
●
●●

●

●●
●

●

●●●
●
●●●●●●●●●●●●●
●●●●●●●●●
●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●
●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●
●●●
●
●
●●
●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●
●

●

●●●●●●●●●●●
●●
●●●●
●
●●●●●●●
●

●
●

●●●●●●●●
●
●●●●●●●●●●●●●

●

●

●

●
●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●
●
●●

●

●

●●
●
●●●●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●
●
●●●●●
●
●●●●

●

●●●●●●●●●
●●●●
●●●
●●
●

●
●
●●●●●●●●●●●●●●●
●●●●●●●●●

●

●

●

●●●●

●

●
●●●●●●●

●

●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●
●●●●●●●●
●●●●●●
●
●
●
●●●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●●●

●

●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●
●●●●
●
●●

●
●●●●
●●●●
●●●●●●
●●
●●
●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●

●

●

●

●●●●

●

●
●●●●●●●●●
●
●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●

●

●
●
●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●
●●
●

●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●
●●
●
●●●●●●
●●●
●
●●●●●●●

●

●
●
●
●●●●●●●●●●
●
●●●●●●●●
●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●
●
●●●●●●●●●●
●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●
●
●

●●●
●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●
●
●●●●
●
●●●●●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●
●
●
●
●
●●

● ●●●● ●●●●●●● ●●●● ●●●●● ●● ●●● ●●● ●●●●●● ●●●●● ●●●● ●● ●● ●● ●● ●●● ●●●●●●●●●●●● ●● ●●●● ●●●● ●●●● ●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ●●●●●●●●●● ●●● ● ●●●●●● ●●● ●●● ● ●●●●●● ●●● ●●● ●● ●●● ● ●● ●●● ●● ●●●●●● ●●● ●● ●●● ●●●●●●● ●● ●● ●● ●●● ●●●● ●● ●●●●●●●●●●●●● ●●● ●● ●●●●●●● ●● ●●●●● ●●● ●● ● ●●●● ●● ●●● ●● ●●● ●●●●● ●●● ●●● ●●●●● ●● ●●●●● ●●● ●●●● ●●●●● ●● ●●●● ●●●●● ●● ●● ●● ● ●●●●● ●●●●●●● ● ●●●● ●●●●● ●● ●●●●●●●● ●●● ●●●●● ●●●●●●● ●● ●●●● ●● ●● ●● ●●● ●●●● ●●●●●● ●●●●● ●● ●●● ●● ●●●●● ●●●● ●●●● ●● ●●●● ●● ●

Leaf Taxa

Leaf
Gene

Xylem Gene

Xylem
Taxa

A

GWAS

DUO was used to compare taxa abundance across 
the population. Taxa abundance vectors are 
compared pair-wise after categorizing individual 
measurements into High, Medium or Low, based on 
the quantiles of the entire dataset. The metric then 
evaluates how correlated the high (up) /low (down) 
components of the vector are. This results in 4 
correlation values: UU, UD, DU and DD 
(U=up,D=down). The correlation is therefore 
directed, and has a source and sink, respectively. 
Mutualism is suggested by a UU or DD correlation, 
while antagonism is suggested by a UD or DU 
correlation. See Figure 3.   

Figure 4: In the figure red indicates that the genotype has a negative effect on the metric (mutualism in this case), 
while blue indicates the genotype has a positive effect. (A) Surface plot of the genotype effect in leaf samples on 
the DUO UU value, the effect on putative mutualism. (B)  Surface plot of genotype effect in xylem samples on 
DUO UU values. 

SSN values are generated by removing a genotype and recalculating the DUO 
metric. By doing this for all genotypes and then observing the resultant 
change from the original metric, we can estimate the genotype’s contribution 
to the DUO correlations. See Figure 4. 
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