Background

- Plant innate immunity has several mechanisms that enable the recognition of microorganisms through different types of immune receptors
- We address the role of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery in plant immunity.

Science

- Transgenic *Arabidopsis* plants were produced that overexpressed ALD1 and resistance levels to virulent *P. syringae* increased.
- During basal state conditions, very rapid defense responses to PAMP flg22 (reactive oxygen species (ROS) burst) was observed in these plants when compared to WT, therefore, ALD1 controls microbial-associated molecular pattern (MAMP) receptor levels and responsiveness.
- Pipecolic acid (Pip), an ALD1-dependent product, which allows for pathogen-induced salicyclic acid (SA) accumulation, did not confer increased flg22 responses to WT or over-expressing ALD1 plants, however exudates from these plants could confer disease resistance.

Significance

- Salicyclic acid (SA), a central player for defense induction and important for resistance to virulent *P. syringae*, is regulated by ALD1.
- ALD1 localizes to the chloroplast, which has a great impact in defense metabolic pathways.
- ALD1 affects earlier defense events than were previously described, therefore, the metabolites produced by ALD1 affect basal and early defenses, which may be more beneficial to the plant’s innate immunity.