Foundational Genomics Research, PMI SFA

High Impact Publication: Engineering beneficial mycorrhization into a non-host perennial plant

Objective	 To introduce a key regulator (PtLecRLK1) of ectomycorrhizal fungus root-colonization into a non-host perennial plant and evaluate its potential to enhance plant productivity and fitness in marginal lands. 	
New science	 A lectin receptor-like kinase gene, <i>PtLecRLK1</i>, that was demonstrated to be a key regulator of root colonization in <i>Populus</i> by <i>L. bicolor</i>, was successfully introduced into switchgrass (<i>Panicum virgatum</i>), a perennial grass known to be a non-host of <i>L. bicolor</i>. Introduction of <i>PtLecRLK1</i> into switchgrass rendered the ability to be colonized by <i>L. bicolor</i>, illustrating the conversion of a non-host to a host of <i>L. bicolor</i>. Inoculation and phenotypic assays indicate that <i>L. bicolor</i>-inoculated switchgrass transgenic plants tend to be more tolerant to phosphorus limitation than the wild type plants. 	- C
Impact	 The ability to engineer the long-lasting beneficial relationships between ectomycorrhizal fungi and select hosts can maximize the utility and productivity of important bioenergy crops. 	pane pane type. ZmUk A) ar Imag Bars =
CAK RIDGE	Qiao Z, et al. (2021) Towards engineering ecto-mycorrhization into switchgrass bioenergy crops via a lectin receptor-like kinase. Plant Biotechnology Journal, DOI: 10.1111/pbi.13671	by gr

Laccaria bicolor colonization in roots of wild type switchgrass (left panels) and ZmUbipro-PtLecRLK1 transgenic switchgrass (right panels). A) Dual fluorescence-stained transverse root section of wild type. B) Dual fluorescence-stained transverse root section of ZmUbipro-PtLecRLK1 transgenic switchgrass. C) and D) Zoom-ins from A) and B). RC: Root cap; Co, Cortex; Ep, epidermis; HN, Hartig net. Images shown are representative images from three experiments. Bars = 5 µm. Colonization including Hartig net formation is illustrated by green fluorescence.

