Lenz, R et al. 2022. Phytopathology

Metabolic patterns in Septoria canker resistant and susceptible Populus trichocarpa genotypes 24 hours post-inoculation

Ryan R. Lenz, Katherine B. Louie, Kelsey L. Søndreli, Stephanie S. Galanie, Jin-Gui Chen, Wellington Muchero, Benjamin P. Bowen, Trent R. Northern, and Jared M. LeBoldus
23 November 2021, Phytopathology 111(11);  https://doi.org/10.1094/PHYTO-02-21-0053-R


Sphaerulina musiva is an economically and ecologically important fungal pathogen that causes Septoria stem canker and leaf spot disease of Populus species. To bridge the gap between genetic markers and structural barriers previously found to be linked to Septoria canker disease resistance in poplar, we used hydrophilic interaction liquid chromatography and tandem mass spectrometry to identify and quantify metabolites involved with signaling and cell wall remodeling. Fluctuations in signaling molecules, organic acids, amino acids, sterols, phenolics, and saccharides in resistant and susceptible P. trichocarpa inoculated with S. musiva were observed. The patterns of 222 metabolites in the resistant host implicate systemic acquired resistance (SAR), cell wall apposition, and lignin deposition as modes of resistance to this hemibiotrophic pathogen. This pattern is consistent with the expected response to the biotrophic phase of S. musiva colonization during the first 24 h postinoculation. The fungal pathogen metabolized key regulatory signals of SAR, other phenolics, and precursors of lignin biosynthesis that were depleted in the susceptible host. This is the first study to characterize metabolites associated with the response to initial colonization by S. musiva between resistant and susceptible hosts.


Lenz R, Louie K, Sondreli K, Galanie S, Chen JG, Muchero W, Bowen B, Northen T, Leboldus J (2021) Metabolic patterns in Septoria canker resistant and susceptible Populus trichocarpa genotypes 24 hours post-inoculation. Phytopathology 111: 2052-2066.